Symmetry-Constrained Normal Mode Analysis of the Bacterial Flagellar Motor

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bacterial flagellar motor: An electromechanical analysis

An electromechanical analysis Tim Elston Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 Alexander Mogilner Department of Mathematics, University of California, Davis, CA 95616 Aravi Samuel Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 Rowland Institute for Science, Cambridge, MA 02142 George Oster Department of Molecular ...

متن کامل

Bacterial flagellar motor

What do you think of the state of biology today? It has indeed changed in many ways, and to the good. Molecular biology has come into its own and provides enormous power to answer new and old questions in such areas as development, physiology, and cell biology. The use of mathematical tools has become increasingly effective in shedding light on ecological and evolutionary problems, and other ma...

متن کامل

Bacterial Flagella: Flagellar Motor

Many species of bacteria actively seek out favourable conditions for growth by swimming up gradients of nutrients, oxygen, light or other attractants, or down gradients away from toxic substances (repellants). Different species employ several different modes of swimming, almost all of which are driven by the rapid rotation of helical flagellar filaments that protrude from the cell. Rotation of ...

متن کامل

Bacterial flagellar motor.

The bacterial flagellar motor is a reversible rotary nano-machine, about 45 nm in diameter, embedded in the bacterial cell envelope. It is powered by the flux of H+ or Na+ ions across the cytoplasmic membrane driven by an electrochemical gradient, the proton-motive force or the sodium-motive force. Each motor rotates a helical filament at several hundreds of revolutions per second (hertz). In m...

متن کامل

Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor.

The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-drive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 2016

ISSN: 0006-3495

DOI: 10.1016/j.bpj.2015.11.313